- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chang, Wenjun (2)
-
Cooper, M_C (2)
-
Forrest, Ben (2)
-
Gal, Roy_R (2)
-
Lemaux, Brian_C (2)
-
Lubin, Lori_M (2)
-
McConachie, Ian (2)
-
Muzzin, Adam (2)
-
Shah, Ekta_A (2)
-
Staab, Priti (2)
-
Urbano_Stawinski, Stephanie_M (2)
-
Wilson, Gillian (2)
-
Annunziatella, Marianna (1)
-
Bardelli, Sandro (1)
-
Cassarà, Letizia_P (1)
-
Cucciati, Olga (1)
-
Giddings, Finn (1)
-
Golden-Marx, Emmet (1)
-
Gomez, Percy (1)
-
Hathi, Nimish (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We examine the quiescent fractions of massive galaxies in sixz≳ 3 spectroscopically confirmed protoclusters in the COSMOS field, one of which is newly confirmed and presented here. We report the spectroscopic confirmation of MAGAZ3NE J100143+023021 at by the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) survey. MAGAZ3NE J100143+023021 contains a total of 79 protocluster members (28 spectroscopic and 51 photometric). Three spectroscopically confirmed members are star-forming ultramassive galaxies (UMGs; > 11), the most massive of which has . Combining Keck/MOSFIRE spectroscopy and the COSMOS2020 photometric catalog, we use a weighted Gaussian kernel density estimator to map the protocluster and measure its total mass in the dense “core” region. For each of the six COSMOS protoclusters, we compare the quiescent fraction to the status of the central UMG as star-forming or quiescent. We observe that galaxies in these protoclusters appear to obey galactic conformity: Elevated quiescent fractions are found in protoclusters withUVJ-quiescent UMGs and low quiescent fractions are found in protoclusters containingUVJstar-frming UMGs. This correlation of star formation/quiescence in UMGs and the massive galaxies nearby in these protoclusters is the first evidence for the existence of galactic conformity atz> 3. Despite disagreements over mechanisms behind conformity at low redshifts, its presence at these early cosmic times would provide strong constraints on the physics proposed to drive galactic conformity.more » « less
-
Forrest, Ben; Lemaux, Brian_C; Shah, Ekta_A; Staab, Priti; Gal, Roy_R; Lubin, Lori_M; Cooper, M_C; Cucciati, Olga; Hung, Denise; McConachie, Ian; et al (, The Astrophysical Journal)Abstract We present an analysis of the number density of galaxies as a function of stellar mass (i.e., the stellar mass function (SMF)) in the COSMOS field atz∼ 3.3, making a comparison between the SMF in overdense environments and the SMF in the coeval field. In particular, this region contains the Elentári proto-supercluster, a system of six extended overdensities spanning ∼70 cMpc on a side. A clear difference is seen in the high-mass slope of these SMFs, with overdense regions showing an increase in the ratio of high-mass galaxies to low-mass galaxies relative to the field, indicating a more rapid buildup of stellar mass in overdense environments. This result qualitatively agrees with analyses of clusters atz∼ 1, though the differences between protocluster and field SMFs atz∼ 3.3 are smaller. While this is consistent with overdensities enhancing the evolution of their member galaxies, potentially through increased merger rates, whether this enhancement begins in protocluster environments or even earlier in group environments is still unclear. Though the measured fractions of quiescent galaxies between the field and overdense environments do not vary significantly, implying that this stellar mass enhancement is ongoing and any starbursts triggered by merger activity have not yet quenched, we note that spectroscopic observations are biased toward star-forming populations, particularly for low-mass galaxies. If mergers are indeed responsible, high-resolution imaging of Elentári and similar structures at these early epochs should then reveal increased merger rates relative to the field. Larger samples of well-characterized overdensities are necessary to draw broader conclusions in these areas.more » « less
An official website of the United States government
